Dam Asset Management Project Sustainable Reservoir Sediment Management

Kyoto University
Graduate School of Management
Tetsuya SUMI

Reservoir Sedimentation

 National Inventory of reservoir sedimentation 2730 dams (>15m high) with 23 billion m³ capacity. Sedimentation progress of all reservoirs over 1 million m³ have been reported annually to the government from 1980s.

In 922 dams of 18 billion m³ volume,

total sedimentation 7.4%

annual loss 0.24%/yr

Sediment yield potential map of Japan

Total sedimentation losses

- Some hydroelectric dams constructed before World War II more than
 50 years old → 60 to 80 %, but problems are depend on the cases.
- Many cases from 1950 and 1960 through the high economic growth period more than 30 years old → beyond 40 %.
- From 1960s, large numbers of multi-purpose dams → 10 to 30 %
 Maintaining effective storage capacity is critical for flood control and water supply.

Total average sedimentation rate 7.4% (1.35 /18.3 billion m3)

Reservoir sediment management measures in Japan

Ikuta river Kyoto Kobe Dam Osaka

Nunobiki Dam

Purpose:

Drinking water supply

Dam: 1900

Bypass Tunnel: 1908

Usually flow into reservoir

Diversion weir H=3m, B=12m

Tunnel inlet

L=258m

Diverted water flow into a bypass tunnel

Tunnel outlet

Nunobiki Reservoir

Usually spilled water flow to downstream

Rokko Mountains
deep weathered
granite, steep slopes
A=9.8km2

A=0.47km2

集水面積

•全体 9.83km²

V=759,521m³ H=33.3m

2. 0km

Comparison of sedimentation progress with and without a bypass tunnel

Need for reservoir sedimentation management 3 points

- Safety Management for Dams and Rivers
 - To prevent the siltation of intake and other hydraulic facilities and aggradations of upstream rivers
- Sustainability of Water Storage Volume
- Comprehensive Management of Sediment Routing System in a River Basin and Connected Shoreline Scale

To prevent riverbed degradation, river morphology change and coastal erosion caused by shortage of necessary sediment supply from upstream including dams

Comprehensive Management of Sediment Routing System in a River Basin and Connected Shoreline Scale

Tenryu River Mouth

Yasuoka dam (1936)

Hiraoka dam (1951)

Sakuma dam (1956)

Akiba dam (1958)

Miwa dam (1959)

Koshibu dam (1969)

Tenryu River Dam Redevelopment Project

HSRS: Hydro-suction Sediment Removal System

Sediment Transport: Transport sediment in reservoir by dredging or other methods

Transport (Two dams)

3Density Current Venting

1Sediment Bypass Tunnel

2HSRS+Sediment Bypass+Sediment Transport

6 Sediment Bypass Tunnel

(Two dams)

Conclusion

Analysis of each facilities and proper maintenance planning is necessary for the sustainable reservoir management under the limited budget.

Asset Management

- Reservoir health is indispensable and, especially, sedimentation is the key factor for long term use.
 Sediment Management for Intergenerational Equity
- In order to solve sedimentation problems,
 - 1) Technically, economically feasible and environmentally compatible countermeasures are requested.
 - 2) Integrated river basin management considering sediment routing system is important.
- Coordinating sediment management of multiple reservoirs in a river basin is the next step.